

Metallic Aggregate Anti-Static Non-Sparking Floor Hardener

Anti-Static Non-Sparking Metallic Aggregate Floor Hardener for Industrial and Petrochemical Flooring

Product Description

This metallic aggregate dry-shake hardener is designed for heavy-duty industrial floors requiring anti-static, non-sparking and high wear resistance. It is broadcast and power-trowelled into fresh concrete to create a dense, conductive wear layer with high impact resistance and durability. The product is suitable for petrochemical, electronics, logistics, warehouse, and defense facilities where explosion-proof and static control are critical.

Key Features & Benefits

- Anti-static conductivity: surface resistivity 5×10⁴ 1×10⁸ Ω, compliant with SJ/T 10694-2006.
- Non-sparking: no spark observed under GB 50209-2010 impact test.
- Class A1 fire rating: durable non-combustible surface layer.
- Abrasion resistance ≤ 0.012 g/cm², suitable for high traffic and heavy loads.
- High strength: compressive ≥ 90 MPa, flexural ≥ 11.5 MPa at 28 days.
- Durable, oil-resistant and dust-proof industrial flooring solution.

Performance Parameters

Test Item	Technical Index	Standard
Anti-static performance (surface resistivity)	5×10^4 – 1×10^8 Ω	SJ/T 10694-2006
Fire rating	Class A1	_
Abrasion resistance (gear method)	≤ 0.012 g/cm²	_
Compressive strength (28 d)	≥ 90 MPa	GB 50209-2010
Flexural strength (28 d)	≥ 11.5 MPa	GB 50209-2010
Tensile strength	3.9 MPa	_
Point-to-point resistance	1×10^5 – 1×10^10 Ω	SJ/T 10694-2006
Volume resistivity	1×10^5 – 1×10^9 Ω	SJ/T 10694-2006
Non-sparking property	No spark observed	GB 50209-2010

Product Usage

- Petrochemical plants and oil depots requiring explosion-proof flooring.
- Gas stations and fuel storage areas requiring non-sparking performance.
- Electronics and battery workshops with ESD-safe conductive floors.
- Warehouses, logistics centers and heavy-duty industrial flooring.
- Pharmaceutical, military and defense facilities with strict safety demands.

Packaging & Storage

- 25 kg moisture-proof composite bags.
- Shelf life: 6 months in dry, ventilated storage.
- Protect from moisture and direct sunlight during storage and transport.

Disclaimer

The information in this Technical Data Sheet is based on laboratory and field results and is provided in good faith. Sino-sina Building Materials Co., Ltd. makes no warranty for results under conditions beyond its control. Users should confirm product suitability through field trials before large-scale application.